Volume Transition and Internal Structures of Small Poly(N-isopropylacrylamide) Microgels

نویسندگان

  • LISE ARLETH
  • XIAOHU XIA
  • REX P. HJELM
  • JIANZHONG WU
  • ZHIBING HU
چکیده

Monodispersed poly(N-isopropylacrylamide) (PNIPAM) nanoparticles, with hydrodynamic radius less than 50 nm at room temperature, have been synthesized in the presence of a large amount of emulsifiers. These microgel particles undergo a swollen–collapsed volume transition in an aqueous solution when the temperature is raised to around 34 °C. The volume transition and structure changes of the microgel particles as a function of temperature are probed using laser light scattering and small angle neutron scattering (SANS) with the objective of determining the small particle internal structure and particle–particle interactions. Apart from random fluctuations in the crosslinker density below the transition temperature, we find that, within the resolution of the experiments, these particles have a uniform radial crosslinker density on either side of the transition temperature. This result is in contrast to previous reports on the heterogeneous structures of larger PNIPAM microgel particles, but in good agreement with recent reports based on computer simulations of smaller microgels. The particle interactions change across the transition temperature. At temperatures below the transition, the interactions are described by a repulsive interaction far larger than that expected for a hard sphere contact potential. Above the volume transition temperature, the potential is best described by a small, attractive interaction. Comparison of the osmotic second virial coefficient from static laser light scattering at low concentrations with similar values determined from SANS at 250-time greater concentration suggests a strong concentration dependence of the interaction potential. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 849–860, 2005

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new route towards colloidal molecules with externally tunable interaction sites.

We describe a route towards self-assembled colloidal molecules, where thermoresponsive microgels serve as discrete, externally tunable interaction sites. The ability of poly(N-isopropylacrylamide) (PNIPAM) and poly(N-isopropylmethacrylamide) (PNIPMAM) microgels to adsorb to the oil/water (O/W) interface and create Pickering-stabilized mini-emulsions was first tested using the controlled additio...

متن کامل

Volume Phase Transition of Swollen Gels: Discontinuous or Continuous?

Poly(N-isopropylacrylamide) (PNIPAM) linear chains and spherical microgels were studied using laser light scattering. The volume change associated with the temperature dependence of the hydrodynamic radii of both the linear chains and the spherical microgels is continuous, in contrast to a discontinuous volume phase transition observed for a bulk PNIPAM gel with an identical composition. A reex...

متن کامل

Bulk modulus of poly(N-isopropylacrylamide) microgels through the swelling transition.

We report measurements of the bulk modulus of individual poly(N-isopropylacrylamide) microgels along their swelling transition. The modulus is determined by measuring the volume deformation of the microgel as a function of osmotic pressure using dextran solutions. We find that the modulus softens through the transition, displaying a nonmonotonous behavior with temperature. This feature is corre...

متن کامل

Smart Homopolymer Microgels: Influence of the Monomer Structure on the Particle Properties

In this work, we compare the properties of smart homopolymer microgels based on N-n-propylacrylamide (NNPAM), N-isopropylacrylamide (NIPAM) and N-isopropylmethacrylamide (NIPMAM) synthesized under identical conditions. The particles are studied with respect to size, morphology, and swelling behavior using scanning electron and scanning force microscopy. In addition, light scattering techniques ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005